Random Jungle, version 2.0.0

A powerful Random Forests (TM) implementation
Edition 2.0.0, 12 March 2013

by Daniel F. Schwarz et al. (Developer) to version 1.2.365
by Jochen Kruppa (Maintainer/Developer) to version 2.0.0
(randomjungle@googlegroups . com)



mailto:randomjungle@googlegroups.com

This manual (12 March 2013) is for Random Jungle (RJ) version 2.0.0, a package containing
an implementation of the Random Forests (TM) method.

Copyright (©) 2008-2011 Daniel F. Schwarz et al..
Copyright (© 2011-today IMBS (http://www.imbs-1luebeck.de)


http://www.imbs-luebeck.de

Table of Contents

1 Introduction and preliminaries................ 1
1.1 Introduction to Random Jungle............coitiiuiienneennenn.. 1
1.2 Historical references......... ... 1
1.3 Problems and bugs. ...t 1
1.4 Using thismanual........... . . i 2

2 Invoking Random Jungle ......................... 3
2.1 Command line options for operation modes..................... 3
2.2 Experimental command line options for operation modes........ 9

3 Inputdata................. ... ... 11
3.1 Input the wholedata................ ... 11
3.2 Restricted analysis..........ooiiiiiiiii i i 12

4 Outputdata.................. ... ... ....... ... 13
4.1 The standard output files .......... ... ... 13
4.2 Log file ..o 13
4.3 Confusion file..... ... 13
4.4 Prediction file. ... ... 13
4.5 TImportance file. ... ... ... 13
4.6 Verbose file ... 14

5 Some nice examples........................... 15
5.1 Rjunglein R 15
5.2 Simpleexamplein R........ ... ... ... .. . 15
5.3 Simple example with ped file.......... ... ... ... .. ... ... 16
5.4 Estimating variable importance ............ ... ... L 16
5.5 Using R and rjungle seperately ............ .. ... ... ... 18
5.6 Using plink and rjungle ....... ... ... o 18
5.7  Prediction (classification) ......... ... .o i 19
5.8 Prediction (probability) .......... ... i 20
5.9 Deterministic Forest........ .. ... 21
5.10 Imputation .........ccooiiiiiii e 21
5.11 Using plink and rjunglesparse ..., 22
5.12 Using MPI. ..o 22

Appendix A Indices of concepts and macros.. 23

A.1 Compiling and installing Random Jungle ...................... 23
A.2 Index for many concepts. ..........ooiiiiiiiiiiiii 24



Chapter 1: Introduction and preliminaries 1

1 Introduction and preliminaries

This first chapter explains what Random Jungle is, where Random Jungle comes from, how
to read and use this documentation, how to call the Random Jungle program, and how to
report bugs about it. It concludes by giving tips for reading the remainder of the manual.

Okay, I have no time to read, how do I get started? Go to the Chapter 5 [Application],
page 15, where you get all the needed information on general Random Forest (TM) tasks.
If you not found what you need, read the options list Section 2.1 [Operation modes|, page 3
and finally write an e-mail to randomjungle@googlegroups. com.

The following chapters then detail all the features of the Random Jungle .

1.1 Introduction to Random Jungle

Random Jungle is an implementation of Random Forests (TM). It is supposed to analyse
high dimensional data. In genetics, it can be used for analysing big Genome Wide Associ-
ation (GWA) data. Random Forests (TM) is a powerful machine learning method. Most
interesting features are variable selection, missing value imputation, classifier creation, gen-
eralization error estimation and sample proximities between pairs of cases.

Random Jungle is mostly compatible with the Linux and Windows (TM). Also, there
exists compatibilities with Solaris.

1.2 Historical references

First ideas where seeded in 2006 during GAW15 workshop in Florida. In the beginning
of 2008, Daniel F. Schwarz released 0.5.0 and 0.5.1 which was a "way pre-release" and
fast, but lagged of features and documentation. However, the williams award was won at
the International Genetic Epidemiology Society (IGES) converence 2008 in St. Louis with
release 0.5.2. In late 2008 and 2009, intensive work improved the platform compatibility,
added documentation and raised the number of features of Random Jungle.

1.3 Problems and bugs

If you have problems with Random Jungle or think you’ve found a bug, please report it.
Before reporting a bug, make sure you've actually found a real bug. Carefully reread the
documentation and see if it really says you can do what you’re trying to do. If it’s not
clear whether you should be able to do something or not, report that too; it’s a bug in the
documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to the smallest possible
input file that reproduces the problem. Then send us the input file and the exact results
Random Jungle gave you. Also say what you expected to occur; this will help us decide
whether the problem was really in the documentation.

Once you’ve got a precise problem, send e-mail to randomjungle@googlegroups.com.
Please include the version number of Random Jungle you are using. You can get this
information with the command rjungle --version or rjungle -Z.

Non-bug suggestions are always welcome as well. If you have questions about things
that are unclear in the documentation or are just obscure features, please report them too.


mailto:randomjungle@googlegroups.com
mailto:randomjungle@googlegroups.com

Chapter 1: Introduction and preliminaries 2

1.4 Using this manual

This manual contains a number of examples of Random Jungle input and output, and a
simple notation is used to distinguish input, output and error messages from Random Jungle.
Examples are set out from the normal text, and shown in a fixed width font, like this

This is an example of an example!

To distinguish input from output, all output from Random Jungle is prefixed by the
string ‘=", and all error messages by the string * ’. When showing how command line
options affect matters, the command line is shown with a prompt ‘$ 1ike this’, otherwise,
you can assume that a simple rjungle invocation will work. Thus:

$ command line to invoke rjungle
Example of input line

=0utput line from rjungle

and an error message

The sequence ‘"D’ in an example indicates the end of the input file. The sequence ‘NL’
refers to the newline character. The majority of these examples are self-contained, and you
can run them with similar results by invoking rjungle -d. In fact, the testsuite that is
bundled in the Random Jungle package consists of the examples in this document! Some
of the examples assume that your current directory is located where you unpacked the
installation, so if you plan on following along, you may find it helpful to do this now:

$ cd randomjungle-2.0.0



Chapter 2: Invoking Random Jungle 3

2 Invoking Random Jungle

The format of the Random Jungle command is:
rjungle [option...]
or
rjunglesparse [option...]

All options begin with ‘=’; or if long option names are used, with ‘-==’". On some platforms
long options might not work. A long option name need not be written completely, any
unambiguous prefix is sufficient. POSIX requires Random Jungle to recognize arguments
intermixed with files, even when POSIXLY_CORRECT is set in the environment. Most options
take effect at startup regardless of their position, but some are documented below as taking
effect after any files that occurred earlier in the command line. The argument ‘==’ is a
marker to denote the end of options.

With short options, options that do not take arguments may be combined into a single
command line argument with subsequent options, options with mandatory arguments may
be provided either as a single command line argument or as two arguments, and options
with optional arguments must be provided as a single argument. In other words, rjungle -
QPDfoo -d a -df is equivalent to rjungle -Q -P -D foo -d -df -- ./a, although the latter
form is considered canonical.

We strictly recommend to use long options. At first some options are not availabe in the
short form and second the validation and understanding is much harder if the short option
is used. Instead use some wrapper functions like described in the example section below.

With long options, options with mandatory arguments may be provided with an equal
sign (‘=”) in a single argument, or as two arguments, and options with optional arguments
must be provided as a single argument. In other words, rjungle --def foo --debug a is
equivalent to rjungle --define=foo --debug= -- ./a, although the latter form is consid-
ered canonical (not to mention more robust, in case a future version of Random Jungle
introduces an option named ‘--default’).

Random Jungle understands the following options, grouped by functionality.

2.1 Command line options for operation modes

Several options control the overall operation of rjungle:
-h

--help Print a help summary on standard output, then immediately exit rjungle
without reading any input files or performing any other actions.



Chapter 2: Invoking Random Jungle 4

--version
Print the version number of the program on standard output, then immediately
exit rjungle without reading any input files or performing any other actions.

-f FILENAME

-—file=FILENAME
FILENAME of input file with data. Input data has to been numerical. The de-
fault FILENAME is input.dat(.gz). In R (http://www.r-project.org), save
data to file using write.table as follows:

> make.your.data.in.R
> write.table(yourData, file = "input.dat", row.names = FALSE,
quote = FALSE)

> quit()

$ rjungle -f input.dat [...]
In plink (pngu.mgh.harvard.edu/ purcell/plink/), save data to raw file us-
ing the recodeA option, set the ped file option and char memory mode option
in rjungle as follows:

$ plink --file yourDataFile --recodeA
$ rjungle -f yourDataFile.raw -p -M 2 [...]

Avoid missing values in data. See See Chapter 3 [Input datal, page 11, for more
details.

-0 FILEPREFIXNAME

—--outprefix=FILEPREFIXNAME
FILEPREFIXNAME of output files is the first part of output files
(i.e.  rjungle.importance, rjungle.prediction, ...).  The default
FILEPREFIXNAME is rjungle. Use for example -0 my_analysis_no123.

—-e CHAR
--delimeter=CHAR
Set the delimeter in your input file to CHAR. Default is a space.

-W
-—write=ID
Save Random Jungle model for a later prediction by -P.

=0 [ID]
not

=1 [ID]
to a gzipped XML file FILEPREFIXNAME .jungle.xml.gz (Not supported
yet)

=2 [ID]

to a XML raw file FILEPREFIXNAME.jungle.xml

=3 [ID]
probability estimationt o a XML raw file FILEPREFIXNAME.jungle.xml

DEFAULT is 0.


http://www.r-project.org
pngu.mgh.harvard.edu/~purcell/plink/

Chapter 2: Invoking Random Jungle 5)

-P FILENAME
—--predict=FILENAME

Predict test data with model (forest) saved by -w2 given by the file FILE-
NAME (test data file is given with option -f). Predictions will be written to
FILEPREFIXNAME .prediction.

—--probability

—-—-deterministic

-y ID

-—treetype=ID

-t SIZE

--ntree=SIZE

-m SIZE

Writes probability predictions to file FILEPREFIXNAME .prediction.
Choose -w3 for the training of the model!

Starts a deterministic forest with variables specified in -C.
FILEPREFIXNAME .prediction. Choose -w3 for the training of the model!

Choose base classifier by setting ID There are serveral treetypes but only CART
is fully supported. Explanatory or exposure variables will be named: input
variables. Explained or response variable will be named: output variable. If
you want to use CART like Random Forest (TM) does choose one of three
possible values as follows:

lorb [ID]

CART, y (output variable): nominal, x (input variable(s)): numeric, ID
= 1 is recommended for less different values in the input variables (i.e.
GWA SNP data or integer data). ID = 5 is recommended for more
different values in the input variables (i.e. many floating point numbers).
Like original Breiman/Cutler/Friedman algorithm.

[ID]
CART, y (output variable): nominal, x (input variable(s)): nominal,

[ID]
CART regression trees, y (output variable): numeric, x (input vari-
able(s)): numeric,

[ID]
CART regression trees, CART regression trees, y (output variable): nu-
meric, x (input variable(s)): nominal,

DEFAULT is 1.

SIZE is the number of trees in jungle. If SIZE=0 then the size will be set au-
tomatically depending on mtry and variable size (experimental feature). DE-

FAULT is 500.

--mtry=SIZE
SIZE of randomly choosen variable sets. At each node building step, a variable
will be selected out of the set, that serves the biggest information gain. The



Chapter 2: Invoking Random Jungle 6

bigger SIZE is set, the higher computing time might be. The bigger SIZE is set,
the more similar trees in jungle will be. High noised data sets should processed
with a big SIZE. Default is square root of number of input variables.

-x NUM

--missingcode=NUM
Missings should always coded as NA or NUM in your data. The program takes
NUM as a internal representation of a missing value. DEFAULT: -99.

-i ID

—--impmeasure=ID
Variable selection: Choose an method for estimating variable importance as

follows:

=1 [ID]
Intrinsic Importrance (i.e. GINI-Index).

=2 [ID]
Permutation Importance by Breiman, Cutler (observed in Fortran code).

=3 [ID]
Permutation Importance by Liaw, Wiener (in R-package RandomForest).

=4 [ID]
Permutation Importance, raw values, no normalization.

=5 [ID]

Permutation Importance by Meng et. al

The results will be written to file FILEPREFIXNAME . importance. You can
not turn off variable importance output. DEFAULT is 1.

-B ID Variable selection/ model optimization: Choose an method for estimating vari-
able importance as follows:

0

[ID]
No backward elimination.

[ID]
Backward elimination. Discard 50% at each step (slow). Stop if number
of variables shrinked to STOPSIZE, see option -j.

[ID]
Backward elimination. Discard 33% at each step (slow). Stop if number
of variables shrinked to STOPSIZE, see option -j.

[ID]
Backward elimination. Discard only negative values at each step
(slow /recommended). (Shown at IGES2007 by Inke R. Konig).

DEFAULT is 0.



Chapter 2: Invoking Random Jungle 7

~j STOPSIZE

--nimpvar=STOPSIZE
Only necessary if ——impmeasure = 2,3,5,6 or 7. How many variable should
remain. The lesser STOPSIZE is, the reliable the result might be. The smaller
SIZE is, the higher computing time will be. DEFAULT is 100.

-v
--verbose
Print some nice information to screen. Otherwise put information to file

FILEPREFIXNAME .verbose (DEFAULT).
-u
--downsampling
Choose randomly samples without replacement. DEFAULT: switched off.

-M ID
—--memmode=ID
Usage of the heap memory (RAM) as follows:

=0 [ID]
Double precision floating point (BIG).

=1 [ID]
Single precision floating point (Normal).

=2 [ID]

Char (small). CHAR normally fits in one byte. DATA CELL VALUE
HAS TO BE AN INTEGER IN [-127..127].

If you want to use very small data coding, i.e. for SNP analysis, give
rjunglesparse a try! DEFAULT is 0.

-C FILE
--colselection=FILE
Only use selected columns listed in FILE. Example content of FILE:

varl
var20
var1000
var300

DEFAULT is take all variables.

-D NAME

--depvarname=NAME
Output variable name in the data SET! If NAME is empty then the rjungle
switches to unsupervised mode.

-s

--sampleproximities
It computes proximities between pairs of cases that can be used in clustering,
locating outliers, or (by scaling) give interesting views of the data. Can be used
as the distance matrix for Multidimensional Scaling (MDS). The results will be
written to file FILEPREFIXNAME .samproximity. DEFAULT: switched off



Chapter 2: Invoking Random Jungle 8

-z
--seeed  Seed of random number generators.

-U
--nthreads=NUM
Maximally use NUM threads (CPUs) for parallel processing. Limit for NUM
is number of CPUs in computer. DEFAULT: Number of CPUs in computer.
Y
--pedfile

Input file has got ped format (i.e. plink output with recodeA). DEFAULT:
switched off.

-1 NUM

—-—-impute=NUM
Impute missings in input data using Random Forest(TM)’s imputation
algorithm. The number of iterations is given by NUM. For imputing continuous
data, use option -A (--impcont) as well. For more information, have a look at
http://wuw.stat.berkeley.edu/ breiman/RandomForests/cc_home.htm.
Do not try to impute untyped SNPs (Schwarz et al. 2009, BMC Proceedings,
3, S65) if case-control-status is missing. Try a different program like:
IMPUTE, MACH, PLINK, ... DEFAULT: switched off.

-k NUM
--maxtreedepth=NUM

This is a stop criterium/tunning parameter. Tree growing will stop, when the
tree exceeds a depth of NUM. DEFAULT: switched off.

-1 NUM

-—targetpartitionsize=NUM
This is a stop criterium/tunning parameter. Tree growing will stop, when a
partion falls below a size of NUM samples. DEFAULT: switched off.

-K NUM

--condimp=NUM
Perform conditional importance if option -i > 1. NUM is the pearson’s cor. coef.
cutoff. The smaller NUM, the bigger a conditional importance permutation
group will be created. (=> More accurate, but slower) Requires: 0 <= NUM
<=1 NUM < 0 => switched off DEFAULT: switched off.

-W

Adjust class weights of unbalanced datasets automatically. =~ DEFAULT:
switched off.

--oobset Outputs the oobset of forest in file *.00ob (each row == one tree) DEFAULT:
switched off.

--classweights=STRING
Sets the weights of classes E.G.: "1.23;22;" ... first class gets weight 1.23 ...
second class gets weight 22 DEFAULT: switched off


http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

Chapter 2: Invoking Random Jungle 9

2.2 Experimental command line options for operation modes

The following options are more or less experimental without a deep validation process. Be
cautious about using one of those.
-d -g -n -r ¢ —a -b -w -V -S -A -G -q -E -X -Q

Those options are experimental. Be cautious about using one of those.

-d

—--depvar=P0S
Output variable at column POS in the data SET. POS=|[0-...| DEFAULT is 0
and switched off.

)

—--depvarcol=P0S
Output variable is the variable POS in the data FILE. POS=[0-...] DEFAULT
is 0 and switched off.

-n
—--varnamesrow=P0S
Variable names at row POS in data set. POS=[0-...] DEFAULT is 0 and
switched off.

-r
—-—nrow=SIZE
Number (SIZE) of samples. SIZE=[1-...]. SIZE = 0: use all samples in data
file DEFAULT is 0.
-c
--ncol=SIZE
Number (SIZE) of input variables (features). SIZE=[1-...]. SIZE = 0: use all
variables in data file DEFAULT is 0.
-a

--skiprow=SIZE
Skip SIZE rows (samples) before reading data from file. SIZE=[1-...] DEFAULT
is 0.

-b

—-skipcol=SIZE
Skip SIZE columns (samples) before reading data from file. SIZE=[1-...] DE-
FAULT is 0.

-S
——summary
Print a summary of all trees in jungle. DEFAULT: switched off.

-A
—--impcont
Impute data is continuous. DEFAULT: switched off (categorical data).
-G
--gwa Impute data with GWA settings. DEFAULT: switched off.



Chapter 2: Invoking Random Jungle 10

-q

—-—tunemtry=THETA
Tune mtry parameter. Step size = THETA. E.g.: Quarter stepping (-q 0.25):
100 predictor variables (ncol = 100) => mtry = 25, 50, 75. DEFAULT": switched

off.
-E
—-—-extractdata

Extract data to file. DEFAULT: switched off.
-X

--plugin=FILE
Use Random Jungle generator from given plugin: FILE. Totally experimental.
Please contact the maintainer for more and detailed information on the plugin
process. So far this part is not fully supported. DEFAULT: switched off (Empty
String).

-Q

--pluginpar=STRING
Additional plugin parameters. As decribed above this part is totally experi-
mental and not under maintance. DEFAULT": switched off (Empty String).



Chapter 3: Input data 11

3 Input data

This chapter describes various input file types of rjungle.

Remember that the Random Forest (TM) approach can not handle missing values. Ran-
dom Jungle has a implemented imputation algorithm but it should be used carefully. Please
consider well known literature for your special problem or remove all missings from the data
(not recommended). We demonstrate some wrapper functions in the example section below.

3.1 Input the whole data

Random Jungle analyses data given in a file and name of response variable, see option -f
and -D. The file format is matrix like and is as follows:

names [Variable]
The first line of the input file contains the variable names. The variable name must
not contain quotes or space charaters. The variables are seperated by space charaters.

cells [Datal
Each following line represents one sample (observation). Every single sample needs
to have one numerical value for each variable. The values are seperated by space
charaters and are ordered corresponding to the variable names (of course).

Here, an example of an input file indat.data:

responseVar inputVarl inputVar2 inputVar3 inputVar4
1.2 3.45.67.8

= = O O O
RN -

3
4.
3
3

o oN -
oo b w
o oo o
oo o
~N N o~

7
8
.0
.0
12.04.06.08.0
The corresponding call would be $ rjungle --file indat.data -D responseVar [...]

If you choose the ped file option -p then the input file format is ped like. The file
must have variables FID, IID, PAT, MAT, SEX, PHENOTYPE and at least three variables
(SNPs). Here, an example of an input file:

FID IID PAT MAT SEX PHENOTYPE rsl rs2 rs3 rs4

1000 NA2001 0 0200101
1000 NA2002 0 0 20020 1
1001 NA2003 00101201
1001 NA2004 00101111
1002 NA2006 0 0211111
1004 NA2006 0 0211211
1005 NA2007 0 0 21 2 2 2 2
1006 NA2008 0 0 11 22 2 2
1007 NA2008 0 0 1122 2 2



Chapter 3: Input data 12

3.2 Restricted analysis

The rjungle can be run also with just a subset of all variables which are given in the input
file (option -f). See description of option -C, for more details.



Chapter 4: Output data 13

4 Output data

This chapter describes various output file types of rjungle.

4.1 The standard output files

If rjungle is executed it will always produce three files: Log file, Confusion file, and
Importance file. You can run an example in your randomjungle-2.0.0 directory and see
it.

$ rjungle -f your_data_file.txt -D response_variable_name -v

$ 1s
rjungle.importance rjungle.log rjungle.prediction test.ped

Or without PED file as follows:

$ rjungle -f your_data_file.txt -D response_variable_name -v

4.2 Log file

The log file contains all options / parameter of the rjungle execution. This is useful to
reproduce results.

4.3 Confusion file

The rjungle always evaluates the classifier. The accuracy on training and test data. Test
data is called oob data which is collected during growing process (similar to cross valida-
tion’s test sets). The results are shown in so-called confusion matrices in file FILEPREFIX-
NAME. confusion. Columns represent the predicted values and rows represent the real
values.

When using option -y1 a file FILEPREFIXNAME.confusion2 will be created. The
file contains class specific error rates.

4.4 Prediction file

The rjungle is able to perform new data to a saved classifier (option -w2 and -P). The
predicted results will be saved to file FILEPREFIXNAME .prediction.

4.5 Importance file

Random Jungle estimates the importance of variables (option -i). The results are saved
to file FILEPREFIXNAME . importance and/or FILEPREFIXNAME. importance2. The
first file contains four columns but most interesting columns are varname (variable name)
and value (importance value). The higher the value, the more important is the variable
with name varname. This list is sorted ascending. So, look at the tail of file to see the most
important variables. The second file contains various permutation importance informations.



Chapter 4: Output data 14

4.6 Verbose file

We recommend to use always -v in each Random Jungle run. Especially new users should
use this option to see what Random Jungle is doing and if all wanted options are active. In
addition a timer is given with a processing information.

If Random Jungle is invoked from command line without verbose option it is very schtum
and do not output anything to screen. It writes all information occuring during a run to
file FILEPREFIXNAME .verbose. Nevertheless, if you want a takly rjungle which puts
all process information to screen then use option (-v)

$ rjungle -f your_data_file.txt -D PHENOTYPE -v

Start

e e e o +
[ RandomJungle [ [
e Fommm T +
re |
o +
OQutput to:

rjungle.*

loading data...

Read 9 row(s) and 10 column(s).
Use 9 row(s) and 6 column(s).
dependent variable name: PHENOTYPE
Growing jungle...

Number of variables: 6 mtry = 2

1 thread(s) growing 500 tree(s)
Growing time estimate: "0 sec.
Generating and collecting output data...
Compiling trees.

Writing accuracy information...
calculating confusion matrix...

Elapsed time: 0 sec
Finished:



Chapter 5: Some nice examples 15

5 Some nice examples

This chapter describes various examples of working with rjungle. We concentrate here
on examples included into the R project (http://www.r-project.org/) and connected
packages. Why do we use Random Jungle invoking R? First, a normal project has some
data handling issues. It is much more easier to do with R, like impute missing values or
renaming and removing columns. Second, if the Random Jungle code is included into a R
script it can be validated and easy repeated.

The following example code is written in R. Therefore, we skiped the > in each line for a
better copy&paste behaviour. R output instead is marked with an >. Shell commands are
still marked by $.

5.1 Rjungle in R

First of all the general framework for Random Jungle in R. We build up "paste" one
command string rjungleCMD and send it to the system e.g. shell.

## File handling for Random Jungle

rjungleExe <- file.path("/to/executable/rjungle")

rjungleInFile <- file.path("/to/inDir/dataWithoutMissings.dat")
rjungleOutFile <- file.path("/to/outDir/projectname")

## Run Random Jungle
rjungleCMD <- paste(rjungleExe,
"-f", rjungleInFile,

v, ## show processing

"-D responseVar", ## response variable name

"-0", rjungleOutFile) ## out file path
try(system(rjungleCMD)) ## send to system

Question: Where do I get the "rjungleExe"? Visit the project webpage of Random
Jungle (http://www.r-project.org/) and download the pre-compiled version of Random
Jungle matching to your system.

Question: What mean "responseVar"? This is your variable of interest. Like the diabtes
state or written in R formula: responseVar ~ Varl + Var2.

5.2 Simple example in R

We want to grow a simple forest on the iris data. So, our input data contains 4
variables (Sepal.Length, Sepal.Width, Petal.Length, Petal.Width) and 1 response
variable(Species). Caution, we write all results files into the working directionary of R!
Change the rjungleQutFile for a better data handling.

## File handling for Random Jungle

rjungleExe <- file.path("/to/executable/rjungle")

rjungleInFile <- file.path("iris.dat")

rjungleQutFile <- file.path("iris")

## Data handling


http://www.r-project.org/
http://www.r-project.org/

Chapter 5: Some nice examples 16

data(iris)

iris$Species = as.integer(iris$Species)  ## convert factor to integer
write.table(iris, file = rjunglelInFile, row.names = FALSE, quote =
FALSE)

## Run Random Jungle
rjungleCMD <- paste(rjungleExe,
"-f", rjungleInFile,

"-v", ## show processing

"-D Species", ## response variable name

"-0", rjungleOutFile) ## out file path
try(system(rjungleCMD)) ## send to system

Question: Where do I find the results? The results are written into the directionary of
R or the specification of rjungleOutFile. Therefore, where your R script is running now.
To get this information type getwd ().

5.3 Simple example with ped file

Using Plink PED-files:

## Run Random Jungle
rjungleCMD <- paste(rjungleExe,

"-f", pedFile,

"-v", ## show processing

"-p", ## read in pedFile

"-o", rjungleQutFile) ## out file path
try(system(rjungleCMD)) ## send to system

Question: What are PED-files? Visit http://pngu.mgh.harvard.edu/ purcell/plink/
for more information.

Question: I have build up an PED-file but it does not work! Have you used the recodeA
option? This is important for Random Jungle to handle PED-Files.

Question: It takes hours to analyse my data! Look at the sparse version of Random
Jungle and other examples below.

5.4 Estimating variable importance

In the second example we used only a small data set. Know we want to analyse the Pima
Indian Diabetes data set. In R the data is available in the package MASS. Firstly, lets
estimate the fast GINI-Importance (i1) with 1000 trees.

library (MASS)

## File handling for Random Jungle

rjungleExe <- file.path("/to/executable/rjungle")
rjungleInFile <- file.path("pima.dat")
rjungleQutFile <- file.path("pima")

## Data handling


http://pngu.mgh.harvard.edu/~purcell/plink/

Chapter 5: Some nice examples 17

data(Pima.tr)

sum(is.na(Pima.tr)) ## Is there any missing?
write.table(Pima.tr, file = rjungleInFile, row.names = FALSE, quote =
FALSE)

## Run Random Jungle
rjungleGiniCMD <- paste(rjungleExe,
"-f", rjunglelnFile,

"-v", ## show processing

"-i1", ## chose GINI-Importance
"-£1000", ## 1000 trees

"-D type", ## response variable name

"-o", rjungleOutFile) ## out file path
try(system(rjungleGiniCMD) )
Secondly, we now want to estimate the permutation importance (i2).
## Run Random Jungle

rjunglePermCMD <- paste(rjungleExe,
"-f", rjunglelnFile,

"-v", ## show processing

"-i2", ## chose permutation-Importance
"-£1000", ## 1000 trees

"-D type", ## response variable name

"-0", rjungleOutFile) ## out file path
try(system(rjunglePermCMD))

Now, we got even a more reliable result.

Finally, we want to use the conditional variable importance (--condimp). Caution it is
much more slower than the permutation importance alone!

## Run Random Jungle
rjunglePermCMD <- paste(rjungleExe,
"-f", rjunglelnFile,

"-v", ## show processing

"-i3", ## chose permutation-Importance
"--condImp 0.2", ## run with condImp of 0.2
"-£1000", ## 1000 trees

"-D type", ## response variable name

"-0", rjungleOutFile) ## out file path
try(system(rjunglePermCMD) )

Now we can read in the wanted importance file.

## Read in the importance file

rjungleGiniImportanceFile <- paste(rjungleOutFile, "importance", sep = "")
rjunglePermImportanceFile <- paste(rjungleOutFile, "importance2", sep = "")
importanceGini <- read.table(rjungleGiniImportanceFile)

importancePerm <- read.table(rjunglePermImportanceFile)

Question: There are many importance values. Which one should I use? We recommend
to use the Liaw score which is the same as in the R package randomForest. Again, look at



Chapter 5: Some nice examples

the options list (i) and get more information on the used importance measures. Depending

on your problem a different important measure might be feasible.

5.5 Using R and rjungle seperately

We want to analyse data from R and do not want to start Random Jungle out of R. Instead

we prepare the data in R and start Random Jungle from the shell.
$ R

data(iris)
iris$Species = as.integer(iris$Species) # convert factor to integer

write.table(iris, file = "iris.dat", row.names = FALSE, quote = FALSE)

quit("no")
$ rjungle -f iris.dat -v -D Species -o iris
$ cat iris.confusion

$ cat iris.importance
It is not recommended to use R and Random Jungle in this way.

5.6 Using plink and rjungle

We assume you have your prepared GWA data called gwadata.

## File handling for PLINK
plinkExe <- file.path("/to/executable/")
plinkInFile <- file.path("gwadata")

## File handling for Random Jungle

rjungleExe <- file.path("/to/executable/rjungle")
rjungleInFile <- file.path("pima.dat")
rjungleOQutFile <- file.path("pima")

## Run PLINK
plinkCMD <- paste(plinkExe,
"--file", plinkInFile,
"--recodeA")
try(system(plinkCMD))

## Run Random Jungle
rjungleCMD <- paste(rjungleExe,
"-f", rjunglelnFile,

"-v", ## show processing
"-il", ## chose GINI-Importance
"-p", ## use PED-file

"-M2", ## memory mode

"-o", rjungleQutFile) ## out file path
try(system(rjungleCMD))



Chapter 5: Some nice examples 19

or

## Read in the importance file
rjungleImportanceFile <- paste(rjungleOutFile, "importance", sep = "")
importance <- read.table(rjungleImportanceFile)

rjungleExe <- file.path("/to/executable/rjunglesparse")

## Run Random Jungle
rjungleCMD <- paste(rjungleExe,
"-f", rjunglelnFile,

"-v", ## show processing
"-il", ## chose GINI-Importance
"-p", ## use PED-file

"-o", rjungleOutFile) ## out file path
try(system(rjungleCMD))

## Read in the importance file
rjungleImportanceFile <- paste(rjungleOutFile, "importance", sep = "")
importance <- read.table(rjungleImportanceFile)

The rjunglesparse uses less memory than rjungle. But your data should only use the
values 0,1,2 and 3(missing code).

Question: What is PLINK? Visit http://pngu.mgh.harvard.edu/ purcell/plink/
for more information.

Question: Where is the difference between both Rjungle runs? In the second one we
use rjunglesparse.

5.7

Prediction (classification)

See examples above for the generation of the iris.dat data file.

## File handling for Random Jungle

rjungleExe <- file.path("/to/executable/rjungle")
rjungleTrainFile <- file.path("iris.dat")
rjungleQutFile <- file.path("iris")

## Run Random Jungle
rjungleCMD <- paste(rjungleExe,
"-f", rjungleTrainFile,

"-w2", ## save trees for prediction
"-v", ## show processing
"-D Species", ## response variable name

"-0", rjungleOutFile) ## out file path
try(system(rjungleCMD))

## Run prediction
rjungleTestFile <- file.path("iris.dat")
rjungleXmlFile <- file.path("iris.jungle.xml")


http://pngu.mgh.harvard.edu/~purcell/plink/

Chapter 5: Some nice examples 20

rjunglePredCMD <- paste(rjungleExe,
"-f", rungleTestFile,
"-P", rjungleXmlFile, ## load saved trees for prediction
"-v", ## show processing
"-D Species", ## response variable name
"-0", rjungleOutFile) ## out file path
try(system(rjunglePredCMD))

## Get prediction
rjunglePredFile <- file.path("iris.prediction")
predRjungle <- read.table(rjunglePredFile)
Question: Is it not bad to use the same data for training and testing? Yes. You should
avoid this. This example is only for demonstration.

5.8 Prediction (probability)

Here we present the probability estimation using Random Jungle. Please con-
sider the project page for a overview of literature dealing with this issue
(http://www.randomjungle.de/).

## File handling for Random Jungle

rjungleExe <- file.path("/to/executable/rjungle")
rjungleTrainFile <- file.path("iris.dat")
rjungleOutFile <- file.path("iris"

## Run Random Jungle
rjungleCMD <- paste(rjungleExe,
"-f", rjungleTrainFile,

"-w3", ## save trees for prediction
"-v", ## show processing
"-D Species", ## response variable name

"-0", rjungleOutFile) ## out file path
try(system(rjungleCMD))

## Run prediction
rjungleTestFile <- file.path("iris.dat")
rjungleXmlFile <- file.path("iris.jungle.xml")
rjunglePredCMD <- paste(rjungleExe,

"-f", rungleTestFile,

"--probability",

"-P", rjungleXmlFile, ## load saved trees for prediction
-y, ## show processing

"-D Species", ## response variable name

"-o", rjungleOutFile) ## out file path
try(system(rjunglePredCMD))

## Get prediction
rjunglePredFile <- file.path("iris.prediction")


http://www.randomjungle.de/

Chapter 5: Some nice examples 21

predRjungle <- read.table(rjunglePredFile)

Question: What is the difference to the classification prediction? I do not see it! You
save the trees in a different format by using the option -w3 in the training step and predict
the probabilties by using --probability.

Question: What is the short option for —-probability? There is no short option for
—-—probability.

Question: Is it not bad to use the same data for training and testing? Yes. You should
avoid this. This example is only for demonstration.

5.9 Deterministic Forest

If you want to force Random Jungle to select at each split always some variables than run
a deterministic forest. In this example we would choose age and sex at each split among
the other random selected variables in the data set.

wantedColumns <- c("age", "sex")
write.table(wantedColumns, file = "wantedColumns.txt",
row.names = FALSE, col.names = FALSE, quote = FALSE)

rjungleCMD <- paste(rjungleExe,
"-f", rjungleInFile,

"-deterministic",
"-C", wantedColumns.txt,

"-o", rjungleOutFile) ## out file path
try(system(rjungleCMD))

5.10 Imputation

The following examples are describing the imputation by Random Jungle. Please be caution.
You will manage to get rid of missings but it might procude false positives. Please consider
the right literature matching to your problem to avoid missings. We cannot give you a
general framework. Still, remove all missings, like na.omit ().

SNP data (raw/fast imputation):
$ rjunglesparse -f mypedfile.raw -p -t1 -I1 -o example8_1_1

The imputation result was written to example8_1_1.imputed.dat.gz and can be used for
analysis. E.g.:

$ rjunglesparse -f example7_1_1.imputed.dat.gz -p ... -o example8_1_2
Imputing continuous data:

$ rjungle -f continuous.dat -A -D responseVar -I6 -o example8_2
or imputing categorical data:

$ rjungle -f cate.dat -D responseVar -I6 -o example8_3

or imputing data with no groups to classify on (unsupervised learning):



Chapter 5: Some nice examples 22

$ rjungle -f continuousAndNoGroups.dat -A -I5 -o example7_4

Question: I have SNP data are there other possibilities? Yes. Look for PLINK or
IMPUTE.

5.11 Using plink and rjunglesparse

The rjunglesparse is the same program like rjungle, but you can use just a small set
of values: 0,1,2 (and 3 as missing coding). Look at Section 5.6 [Exampleb], page 18 for a
implementation in R. You might want to use rjunglesparse in conjunction with plink.
The memory consumption of rjunglesparse is very small.

$ plink --file gwadata --recodeA
$ rjunglesparse -f plink.raw -p -v -o example8

$ tail example8.importance

5.12 Using MPI

For high speed parallel processing, Random Jungle could be used on computer clusters using
MPI mode (Random Jungle has to be compiled for MPI!). The program was performed on
huge data successfully using 150 processors (300 processes) in parallel on a high performance
cluster. However, the MPI mode should be used by experienced users only. In MPI mode,
performing permutation importance (option -i2, .., -i5) is allow exclusivly. Execute Random
Jungle as follows (one possibility, look at your job system, it might differ):

$ plink --file gwadata --recodeA

$ mpirun -np 200 --host hostnamel, hostname2,

rjunglesparse -f plink.raw -p -v -i4 -o example9

$ tail example9.importance

Each process writes temp files to working directory (example9_mpi_id_*.x). Final
results are written to usual files (example9.*).
Question: Where do I get the MPI pre-compiled versions? Please look at the project

homepage (http://www.randomjungle.de/). If there is no MPI pre-compiled version, it is
not possible at the moment.

Question: MPI does not work on the cluster etc.? Please contact your admin. Depending
on your batch or job system there are many sources of errors.


http://www.randomjungle.de/

Appendix A: Indices of concepts and macros 23

Appendix A Indices of concepts and macros

A.1 Compiling and installing Random Jungle

There are pre-compiled versions on the internet site http://www.randomjungle.de/.
Maybe, there exists a pre-compiled version for your platform (computer) and you do not
need to compile it.

The source code is not freely available. Please write to infoimbs@imbs-luebeck.de and
ask for a possible cooperation or a pre-compiled version for your system.

Random Jungle uses some GNU tools, libraries and other free open source code. The
installation routine (./configure) prompt you to install packages which are missing on
your machine. It is also recommended to compile the sources with an openMP supporting
compiler (i.e. GNU gcc > 4.2). Invoke the following commands to compile rjungle:

./configure
make

make check
make install

For compiling Random Jungle with MPI (message passing interface) support,
configure RJ using option --enable-mpi. The program is optimized for Open MPI
(http://www.open-mpi.org/). The MPI mode should be used by experienced users only.

./configure --enable-mpi


http://www.randomjungle.de/
mailto:infoimbs@imbs-luebeck.de
http://www.open-mpi.org/

Appendix A: Indices of concepts and macros

A.2 Index for many concepts

A

application ....... ... .. . 15

B

bug reports. .. ..o 1

C

command line ............... .. ... ... 3
command line, options.......................... 3
confusion file . ......... .. ... ... ... .. ... 13

D

deterministic forest .................. .. ... 21

E

examples, understanding............... ... ... ... 2

H

history of Random Jungle ....................... 1

I

importance file ......... ... oo 13
imputation ........ ... .. o 21
input data............... i 11
input the whole data .......................... 11
invoking Random Jungle......................... 3

24
L
log file. ..o 13
options, command line.......................... 3
output data ........... oo i 13
overview of Random Jungle...................... 1
P
plink rjungle....... ... ... .. oL 18, 22
prediction classification........................ 19
prediction file....... ... ... oo 13
prediction probability................. ... 20
R
rrjungle. ... 18
reporting bugs.......... .. i 1
restricted analysis ............. ... ... ... ... 12
rjungleinr......... oo oo 15
rjungle mpi........oo i 22
simple example inr........ ... . ..ol 15
simple example with ped file................... 16
standard files.......... .. ... o i 13
suggestions, reporting............. ... .. ... 1

vV

variable importance............. ... ... o 16
verbose file . ... 14



	Introduction and preliminaries
	Introduction to Random Jungle
	Historical references
	Problems and bugs
	Using this manual

	Invoking Random Jungle
	Command line options for operation modes
	Experimental command line options for operation modes

	Input data
	Input the whole data
	Restricted analysis

	Output data
	The standard output files
	Log file
	Confusion file
	Prediction file
	Importance file
	Verbose file

	Some nice examples
	Rjungle in R
	Simple example in R
	Simple example with ped file
	Estimating variable importance
	Using R and rjungle seperately
	Using plink and rjungle
	Prediction (classification)
	Prediction (probability)
	Deterministic Forest
	Imputation
	Using plink and rjunglesparse
	Using MPI

	Indices of concepts and macros
	Compiling and installing Random Jungle
	Index for many concepts


